Towards Database and
Serverless Runtime
Co-Design

Pekka Enberg, Sasu Tarkoma, Ashwin Rao

University of Helsinki
CoNEXT-SW 2023

Problem

* Serverless runtimes are stateless, but many applications
need to manage state to be useful.

o Key-value stores are fast for keeping state, but restricted
whereas traditional databases are but slow but more
expressive.

* Embedded databases such as SQLite combine best of
both worlds, but integrating with serverless runtime
requires rethinking the architecture.

Outline

Serverless & multitenancy
SQLite architecture and limitations
Our proposed solution

Related work & discussions

Serverless & multitenancy

e Serverless runtime executes stateless functions, which
typically take HT TP requests as input and output HTTP
responses.

 Massive multitenancy is critical for serverless edge
computing because service provider needs to pack lots of
tenants on machines to reduce cost.

e For example, Cloudflare Workers uses V8 isolates instead
of virtual machines or containers to fit 10 million
customers on a dozen of machines [Varda, 2019].

Kenton Varda. 2019. Fine-Grained Sandboxing with V8 Isolates. Web page.

https://www.infoq.com/presentations/cloudflare-v8/

Example: Cloudflare
Workers

The Cloudflare
global network . {

e o ° o)
LI A . o
I e ® _o® o8 oo ¢’
Our vast global network, which is one of the a0 .‘..‘,%‘.g ...:3 e B o o Ot
fastest on the planet, is trusted by millions of @0 o8 o e O i ee®
. o % ® _gon, 0y %2 0050
web properties. ° (Y L 8 ¢"0, 08>
o ° o oot Sl Al °
o0 L) ®, o Y
e © o o o ® %
q c . . » o [
With direct connections to nearly every service .. LA | ° e L)
. . oa
provider and cloud provider, the Cloudflare ® o ng .:' e °
& .
network can reach about 95% of the world's % ° o * ® e
. - . o
population within approximately 50 ms.] ®

"Deploy once,
run everywhere"

—— S

Source: https://www.cloudflare.com/en-gb/network/

SQLite architecture

e SQLite is a SQL database engine library that applications
can embed.

e The high-level interface is sgqlite3 prepare () for
preparing SQL statements and sqlite3 step () for
executing them.

e SQL statements are transformed into bytecode programs
that are executed by the SQLite virtual machine.

Kenton Varda. 2019. Fine-Grained Sandboxing with V8 Isolates. Web page.

https://www.infoq.com/presentations/cloudflare-v8/

SQLite architecture

Table 1: Bytecode program for SSB Q1.1.

Interface Tokenizer
N SQL Command _§
S Parser Y
O Processor S
| | S
3
S
Virtual Machine
Code
Generator
\ 4
B-Tree
- |
S .y
§ Pager Utilities .§
Q ‘ S
<
3
OS Interface Test Code <

Figure 1: Architecture of SQLite

Address Opcode P1 P2 P3 P4 P5
0 Init 1 23 0 00
1 Null 0 1 3 00
2 OpenRead 0 7 0 12 00
3 OpenRead 1 6 0 5 00
4 Rewind 0 19 0 00
5 Column 0 11 4 00
6 Lt 6 18 4 BINARY-8 54
7 Gt 7 18 4 BINARY-8 54
8 Column 0 8 4 00
9 Ge 8 18 4 BINARY-8 54

10 Column 0 5 9 00
11 SeekRowid 1 18 9 00
12 Column 1 4 4 00
13 Ne 10 18 4 BINARY-8 54
14 Column 0 9 5 00
15 Column 0 11 11 00
16 Multiply 11 5 4 00
17 AggStepl 0 4 1 sum(l) 01
18 Next 0 5 0 01
19 AggFinal 1 1 0 sum(1) 00
20 Copy 1 12 0 00
21 ResultRow 12 1 0 00
22 Halt 0 0 0 00
23 Transaction 0 0 6 0 01

Kevin P. Gaffney et al. 2022. SQLite: Past, Present, and Future. /n VLDB '22.

SQLite limitations

e SQLite virtual machine is synchronous, which means
performing |/O blocks the thread.

e However, the sqlite3_step() function could return a
"SQLITE_IO status code.

 SQLite is filesystem centric, which limits deployment
options.

Latency (us)

SQLite query latency
distribution

13 ms—
104_5 —— pP999 /
| P99
' . p95 The micro-benchmark
' executes SELECT *
1031 —— p50 ~ FROM user LIMIT 100
f against a 1 MB database
file with 1-50 threads on
an AMD Ryzen 9 3900XT
' 12-Core machine.
102 —— —
25 Us -ﬂ--‘» I I e e i S
0 10 20 30 40 50

Number of Threads

Our solution

 Asynchronous bytecode instructions

 Decouple compute and storage

Our solution: Asynchronous
bytecode instructions

e SQLite's virtual machine bytecode instructions that
perform I/O are blocking.

* To support asynchronous I/O, let's introduce instructions
that don't block using async/await.

Our solution: Asynchronous
bytecode instructions

sqlite> EXPLAIN SELECT * FROM users;
addr opcode pl p2 p3
0 8
OpenRead 0 2
Rewind 0 7
Column 0
Column 0
ResultRow 1
Next
Halt
Transaction
Goto

1
2
3
4
5
6
/
8
9

Our solution: Asynchronous
bytecode instructions

EXPLAIN SELECT * FROM users;
addr opcode pl p2

S

11
OpenReadAsync 2
OpenReadAwait
RewindAsync
RewindAwait
Column

Column
ResultRow
NextAsync
NextAwait
Halt
Transaction

Goto

S

S

1
2
3
4
5
6
/
8

S OO OO OO

PO PO NPFPORELS

SO OO OO OOPFrPrOSOOSOO S

®®®®®®®®®®®®®I'81
|

Our solution: decoupling
query and storage

* We want the query engine integrated in the serverless
runtime, but we can't necessarily host all databases on
the serverless node because of storage constraints.

Related work: special
purpose filesystems

* |n-memory transactional caching buffering layer
between SQLite and the cloud provider's network
filesystem achieves 10M transactions per minute (tpm)
reads, but only 100 tpm writes [Jonas et al., 2019].

* FaaS filesystem although 30x faster than NFS, achieves
10k tpm [Schleier-Smith et al., 2020].

* Filesystem is not the right abstraction for serverless?

Eric Jonas et al. 2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing. Tech report.

Johann Schleier-Smith et al. 2020. A FaaS File System for Serverless Computing. Tech report.

Related work: SQLite
logical logging

e |ogical logging to reduce the write amplification of
WAL in SQLite, which is a pain-point for mobile
applications [Park et al., 2017].

Jong-Hyeok Park et al. 2017. SQL Statement Logging for Making SQL.ite Truly Lite. /n VLDB '17.

Related work: compute and
storage decoupling

* Architecture for decoupling compute and storage, and
backing up to S3 [Verbitski et al., 2017].

Alexandre Verbitski et al. 2017. Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases. /n SIGMOD '17.

Discussion

Can multiple serverless runtimes access the same
database? Or will we need smart request routing +
sharding?

Where does the page cache live? In the guest (the
application) or the host (the runtime)?

What is the strongest transaction isolation level we can
guarantee? How does recovery work?

Can we leverage compute offload on NICs, storage
devices, etc.?

