
Towards Database and
Serverless Runtime

Co-Design
Pekka Enberg, Sasu Tarkoma, Ashwin Rao

University of Helsinki
CoNEXT-SW 2023

Problem

• Serverless runtimes are stateless, but many applications
need to manage state to be useful.

• Key-value stores are fast for keeping state, but restricted
whereas traditional databases are but slow but more
expressive.

• Embedded databases such as SQLite combine best of
both worlds, but integrating with serverless runtime
requires rethinking the architecture.

Outline

• Serverless & multitenancy

• SQLite architecture and limitations

• Our proposed solution

• Related work & discussions

Serverless & multitenancy

• Serverless runtime executes stateless functions, which
typically take HTTP requests as input and output HTTP
responses.

• Massive multitenancy is critical for serverless edge
computing because service provider needs to pack lots of
tenants on machines to reduce cost.

• For example, Cloudflare Workers uses V8 isolates instead
of virtual machines or containers to fit 10 million
customers on a dozen of machines [Varda, 2019].

Kenton Varda. 2019. Fine-Grained Sandboxing with V8 Isolates. Web page.

https://www.infoq.com/presentations/cloudflare-v8/

Example: Cloudflare
Workers

"Deploy once,

run everywhere"

Source: https://www.cloudflare.com/en-gb/network/

SQLite architecture

• SQLite is a SQL database engine library that applications
can embed.

• The high-level interface is sqlite3_prepare() for
preparing SQL statements and sqlite3_step() for
executing them.

• SQL statements are transformed into bytecode programs
that are executed by the SQLite virtual machine.

Kenton Varda. 2019. Fine-Grained Sandboxing with V8 Isolates. Web page.

https://www.infoq.com/presentations/cloudflare-v8/

SQLite architecture

Kevin P. Gaffney et al. 2022. SQLite: Past, Present, and Future. In VLDB '22.

SQLite limitations

• SQLite virtual machine is synchronous, which means
performing I/O blocks the thread.

• However, the `sqlite3_step()` function could return a
`SQLITE_IO` status code.

• SQLite is filesystem centric, which limits deployment
options.

SQLite query latency
distribution

13 ms

25 μs

The micro-benchmark
executes SELECT *
FROM user LIMIT 100
against a 1 MB database
file with 1-50 threads on
an AMD Ryzen 9 3900XT
12-Core machine.

Our solution

• Asynchronous bytecode instructions

• Decouple compute and storage

Our solution: Asynchronous
bytecode instructions

• SQLite's virtual machine bytecode instructions that
perform I/O are blocking.

• To support asynchronous I/O, let's introduce instructions
that don't block using async/await.

Our solution: Asynchronous
bytecode instructions

Our solution: Asynchronous
bytecode instructions

Our solution: decoupling
query and storage

• We want the query engine integrated in the serverless
runtime, but we can't necessarily host all databases on
the serverless node because of storage constraints.

Related work: special
purpose filesystems

• In-memory transactional caching buffering layer
between SQLite and the cloud provider's network
filesystem achieves 10M transactions per minute (tpm)
reads, but only 100 tpm writes [Jonas et al., 2019].

• FaaS filesystem although 30x faster than NFS, achieves
10k tpm [Schleier-Smith et al., 2020].

• Filesystem is not the right abstraction for serverless?

Eric Jonas et al. 2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing. Tech report.

Johann Schleier-Smith et al. 2020. A FaaS File System for Serverless Computing. Tech report.

Related work: SQLite
logical logging

• Logical logging to reduce the write amplification of
WAL in SQLite, which is a pain-point for mobile
applications [Park et al., 2017].

Jong-Hyeok Park et al. 2017. SQL Statement Logging for Making SQLite Truly Lite. In VLDB '17.

Related work: compute and
storage decoupling

• Architecture for decoupling compute and storage, and
backing up to S3 [Verbitski et al., 2017].

Alexandre Verbitski et al. 2017. Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases. In SIGMOD '17.

Discussion
• Can multiple serverless runtimes access the same

database? Or will we need smart request routing +
sharding?

• Where does the page cache live? In the guest (the
application) or the host (the runtime)?

• What is the strongest transaction isolation level we can
guarantee? How does recovery work?

• Can we leverage compute offload on NICs, storage
devices, etc.?

