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ABSTRACT
In serverless computing, minimizing database access latency is cru-
cial, but databases predominantly reside in cloud environments,
necessitating costly network round-trips. Embedding an in-process
database library such as SQLite into the serverless runtime is the
holy grail for low-latency database access. However, SQLite’s ar-
chitecture limits concurrency and multitenancy, which is essential
for serverless providers, forcing us to rethink the architecture for
integrating a database library. We propose changing the SQLite
virtual machine to provide asynchronous bytecode instructions to
avoid blocking in the library and decoupling the query and storage
engines to facilitate database and serverless runtime co-design.
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1 PROBLEM STATEMENT
With the emergence of serverless computing, the co-location of
compute and data is becoming critical, especially with edge comput-
ing, where low latency is a critical requirement. Several in-memory
key-value stores are available to address the low latency require-
ment. However, databases that support SQL are deployed in tradi-
tional, non-serverless cloud environments, partly because stateful
workloads are challenging for serverless computing [5].

One practical approach to mitigate latency is multi-region sup-
port in databases, which involves deploying multiple database repli-
cas across different geographical regions. However, even with repli-
cation, database access still requires a network round-trip from the
serverless runtime to the database. The holy grail for achieving
minimal database access latency is to integrate the database into
the application itself. This approach eliminates the need for net-
work round-trips, thereby reducing query execution to efficient
in-process function calls. SQLite [3], an in-process database man-
agement system, has gained widespread adoption across diverse
use cases, solidifying its position as the most widely deployed data-
base solution. While embedding SQLite into the serverless runtime
seems obvious for co-locating computing and data [5], its architec-
ture makes that challenging.

The SQLite architecture has two main parts: the core and the
backend [2]. The core consists of the SQLite C API interface for
applications, an SQL compiler, and a virtual machine for executing
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Figure 1: SQLite query latency (logarithmic scale). Increasing
the number of tenants (threads) beyond the number of cores signifi-
cantly affects the tail latency.

SQL queries. Execution of a SQL query when using SQLite begins
with the sqlite3_prepare() function that transforms SQL state-
ments such as SELECT into sequences of bytecode instructions.
This bytecode is executed in the sqlite3_step() function that in-
ternally calls into the backend pager for traversing the database
B-trees representing tables and rows. The pager caches the pages
containing the relevant B-tree nodes, and performs the required
disk I/O using the OS filesystem interface.

In contrast to SQLite, serverless applications are composed of
functions that execute within a serverless runtime environment.
Platform providers are vested in maximizing the density of func-
tions per CPU and DRAM to achieve cost optimization. Conse-
quently, maximizing the number of tenants running concurrently
on a given physical machine is imperative to embedding SQLite
into the serverless runtime. Furthermore, to maintain a high den-
sity of functions per DRAM, it is crucial to efficiently offload data
storage operations to devices such as NVMe and SSDs while pre-
serving low query latency. However, the sqlite3_step() function
is inherently synchronous.

To highlight the impact of SQLite’s synchronous architecture on
multitenancy, we run a microbenchmark that creates a thread per
tenant representing a resident and executable function in a server-
less runtime. Each thread opens a connection to a separate, 1MiB
SQLite database file, and we increment the number of threads from
1 to 50. In each thread, we execute the query SELECT * FROM user
LIMIT 100 1 million times and we measure the query execution
time using HdrHistogram [7]. We ran our microbenchmark on an
AMD Ryzen 9 3900XT 12-Core Processor machine. In Figure 1 we
present the median, 90𝑡ℎ , 99𝑡ℎ , and 99.9𝑡ℎ percentiles of the query
latency for a given number of threads. We observe that the query
latency does not degrade gracefully with the number of threads
when the number of threads exceeds the number of processing
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Figure 2: Proposed Database architecture.

cores. Instead, we observe jumps in the latency percentiles when
the number of threads is close to a multiple of the number of cores.

Our preliminary results highlight that SQLite can limit multi-
tenancy. Specifically, the number of tenants that concurrently use
SQLite may be limited by the number of processing cores, and increas-
ing the number of tenants beyond the number of cores can increase
the tail latency experienced by the tenants.

2 OUR SOLUTION
We propose the following two building blocks to integrate the
database library into a serverless runtime.

• Asynchronous bytecode instructions to avoid blocking in
the library.

• Decoupling query and storage engines to facilitate the co-
design of the database and serverless runtime.

Asynchronous bytecode instructions. When the SQLite virtual
machine executes instructions to traverse the B-tree, the pager
module may have to perform I/O to read the pages into memory.
Similarly, when the virtual machine commits a transaction, it must
write pages to the disk. To avoid blocking in the library, we propose
to change the SQLite bytecode instruction set to provide asynchro-
nous variants for instructions that perform I/O. For example, the
Next instruction, which advances a cursor to point to the next
available row, may need to read b-tree pages from the disk. We
propose that the SQL compiler generates a pair of instructions
NextAsync and NextAwait, where the first instruction submits I/O
asynchronously and returns from the sqlite3_step() function
and returns a SQLITE_IO result to indicate that I/O was submitted.
The application can then either call into sqlite3_step() again to
execute NextAwait to block on the I/O or keep performing other
operations until the I/O is complete. An external I/O dispatch loop
such as io_uring notifies the application on I/O completion.

Decoupling query and storage engines. The asynchronous ar-
chitecture eliminates blocking and improves concurrency in the
serverless runtime, allowing for more tenants. However, it is also
essential to decouple the query and storage engines to minimize
query latency and maximize the density of functions per CPU and
DRAM.

Figure 2 shows the proposed architecture that consists of a front
end, a middle-end, and a back end. Unlike in SQLite’s architecture,

the front end includes the pager module. The backend part is a
pluggable storage engine to provide flexibility for integrating with
the serverless runtime. The middle-end contains the page cache.
The frontend is either compiled into WebAssembly and runs as
part of the application or is embedded into the runtime and ex-
posed to applications separately. The backend is integrated into
the serverless runtime or as a separate server process to facilitate
elastic scaling independent of the compute layer. The middle-end
can either run as part of the application, as part of the serverless
runtime, or in a remote server, depending on the query latency and
multitenancy trade-offs needed.

3 KEY RELATEDWORKS
There are many workarounds to address the limitation of SQLite’s
architecture, and key examples include LiteFS [4] and LibSQL [6].
LiteFS is a user-space filesystem that intercepts writes to the SQLite
database WAL for replicating SQLite databases in clusters. Lib-
SQL [6] is a SQLite fork that uses a similar replication strategy
but implements it using WAL extension hooks. In contrast, Cloud-
flare D1 [8] is a proprietary SQLite-based database integrated into
the Cloudflare Workers [1] serverless runtime, which works by
intercepting writes to the SQLite database file. Regardless, the syn-
chronous architecture of SQLite is a fundamental limitation in these
solutions.

4 SUMMARY
Asynchronous bytecode instructions and decoupling query and
storage engine facilitates database and runtime co-design, which
results in low-latency database access for serverless applications. Be-
cause the synchronous model is fundamental to SQLite, we propose
to build a new database library prototype compatible with SQLite
whose tail-latency increases gracefully (linearly) with the number of
tenants. This approach paves the way to integrate general-purpose
database systems into serverless computing environments.
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