
Serverless Runtime / Database Co-Design With Asynchronous I/O
Pekka Enberg

University of Helsinki
Sasu Tarkoma

University of Helsinki

Jon Crowcroft
University of Cambridge

Ashwin Rao
University of Helsinki

ABSTRACT
Minimizing database access latency is crucial in serverless edge
computing for many applications, but databases are predominantly
deployed in cloud environments, resulting in costly network round-
trips. Embedding an in-process database library such as SQLite into
the serverless runtime is the holy grail for low-latency database
access. However, SQLite’s architecture limits concurrency and mul-
titenancy, which is essential for serverless providers, forcing us to
rethink the architecture for integrating a database library.

We propose rearchitecting SQLite to provide asynchronous byte-
code instructions for I/O to avoid blocking in the library and de-
coupling the query and storage engines to facilitate database and
serverless runtime co-design. Our preliminary evaluation shows
up to a 100x reduction in tail latency, suggesting that our approach
is conducive to runtime/database co-design for low latency.

CCS CONCEPTS
• Information systems→ Database management system en-
gines; • Networks→ Cloud computing.

KEYWORDS
Edge computing, serverless computing, in-process databases

ACM Reference Format:
Pekka Enberg, Sasu Tarkoma, Jon Crowcroft, and Ashwin Rao. 2024. Server-
less Runtime / Database Co-Design With Asynchronous I/O. In 7th Inter-
national Workshop on Edge Systems, Analytics and Networking (EdgeSys
’24), April 22, 2024, Athens, Greece. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3642968.3654821

1 INTRODUCTION

If at least one of these attributes [bandwidth scalability, low
end-to-end latency, data privacy, high availability, data
export compliance] is crucial for the application, then it
is an edge-native application. If none of them are really
needed, none of them is essential, then edge computing is an
expensive luxury.

Mahadev Satyanarayanan [10].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EdgeSys ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0539-7/24/04
https://doi.org/10.1145/3642968.3654821

SQL Command
Processor

Interface

Virtual Machine

B-Tree

Pager

OS interface

io_uring

Submits
I/O requests
and returns

Runtime

Event Loop

Poll I/O
completion

Figure 1: Rearchitecting SQLite for asynchronous I/O. The
SQLite architecture is synchronous, i.e., application threads block on
I/O at the OS interface. To support asynchronous I/O, we propose
changing SQLite—at the virtual machine layer and below—to asyn-
chronously submit I/O using an interface such as io_uring and return
control to the application thread. This enables each application thread
to concurrently execute computational and I/O tasks.

Applications built to run on cloud and edge/fog platforms are
increasingly being developed as serverless functions. The serverless
paradigm aids application development by offloading the problems
of scaling and deployment of computing resources to the platforms.
For instance, serverless run-times such as Cloudflare Workers [4]
allow application developers to deploy applications in a location-
agnostic manner. A key benefit of developing location-agnostic
applications is that they can be easily migrated from one data center
to another and, thus, from the cloud to the edge. The serverless
paradigm is therefore beneficial for creating and deploying location
agnostic applications that can be deployed at the edge.

Along with location agnostic applications, serverless runtimes
are increasingly leveraged for developing latency-critical applica-
tions. This was not always the case. Legacy serverless runtimes
suffered from high run-time overheads because their underlying
control and data planes were not designed to serve the short-lived
functions [2, 8, 12]. We therefore believe that, along with location

https://doi.org/10.1145/3642968.3654821
https://doi.org/10.1145/3642968.3654821


agnosticism, serverless run-times will be useful for latency-critical
edge-native applications.

Applications that require low end-to-end latency are good can-
didates to be deployed as edge-native applications. Latency-critical
edge-native applications require co-locating the data used by the
application with the computing resources that process the data.

One practical approach to co-locate data with the computing re-
sources deployed at the edge is to leverage the multi-region support
in databases. This involves deploying multiple database replicas
across different geographical regions. However, even with replica-
tion, database access still requires a network round-trip from the
serverless runtime to the database.

The holy grail for achieving minimal database access latency is to
integrate the database into the application itself. This approach elim-
inates the need for network round-trips, thereby reducing query
execution to efficient in-process function calls. Light-weight data
stores such as in-memory key value stores are typically deployed
within serverless runtimes when data can be moved closer to the
compute. For instance, Cloudflare Workers KV [5] exemplifies in-
memory key-value stores that are optimized to run in the server-
less runtimes. However, databases that support SQL are deployed
in traditional, non-serverless cloud environments, partly because
stateful workloads are challenging for serverless computing [9].
SQLite [7], an in-process database management system, has there-
fore gained widespread adoption across diverse use cases, solidi-
fying its position as the most widely deployed database solution.
While embedding SQLite into the serverless runtime seems obvious
for co-locating computing and data [9], its architecture makes that
challenging.

In this paper, we first delve into the internals of SQLite and
highlight that synchronous I/O is deeply rooted in its architecture
(Figure 1). This makes SQLite a bottleneck when deploying latency
critical serverless applications that use it. We propose changing the
SQLite virtual machine to provide asynchronous bytecode instruc-
tions. We show that our modifications help serverless runtimes
avoid blocking in the library and decoupling the query and storage
engines to facilitate database and serverless runtime co-design. Our
preliminary evaluation shows up to a 100x reduction in tail latency,
suggesting that our approach is conducive to runtime/database
co-design for low latency.

2 BACKGROUND AND MOTIVATION
Serverless computing and data
Serverless computing is a paradigm where applications can exe-
cute code without dealing with resource allocation, users pay for
resources used instead of the resources allocated, and computation
and storage are decoupled [9]. For example, Cloudflare Workers [4]
is a serverless platform that internally uses V8 isolates, a light-
weight execution environment to run JavaScript applications in
isolation from each other within a single OS process. With Cloud-
flare Workers, an application developer writes JavaScript functions
to perform application logic, and this code can run across all of
Cloudflare’s locations. Cloudflare routes user requests automati-
cally to the closest location, providing location-agnostic serverless
computation. Serverless computing platforms, such as Cloudflare

Workers, offer location-agnostic computing which can be leveraged
for developing and deploying edge-native applications.

Most real-world applications need to manage state and access
data, but serverless state management continues to be an unsolved
problem [9, 16]. Many serverless platforms offer in-memory key-
value stores for low latency data access. However, they may be
unsuitable for many tasks. For instance, their domain-independent
interface pushes complexity to the application, theymay require net-
work round-trips, and they incur (un)marshaling overheads [1]. To
address these limitations of in-memory key-value stores, many ap-
plications end up externalizing data access to a cloud database [16]
which offers transactionality and a query language such as SQL.
However, accessing these cloud databases can incur costly round-
trips to the database. One approach to reduce the database access
latency is to leverage multi-region support, i.e., deploying multi-
ple database replicas across different geographical regions. How-
ever, even with replication, database access still requires a network
round-trip from the serverless runtime to the database.

The holy grail for achieving minimal database access latency is to
integrate the database into the application itself. This approach elim-
inates the need for network round-trips, thereby reducing query
execution to efficient in-process function calls.

Synchronous I/O in SQLite architecture

Think of SQLite not as a replacement for Oracle but as a
replacement for fopen() [13].

SQLite is an in-process database management system [7]. Un-
like traditional databases that have a client-server architecture,
SQLite embeds within an application. Applications access databases
by invoking library functions provided by SQLite, which use the
filesystem to store data and write-ahead logs (WAL). Query pro-
cessing happens in the context of an application thread; there are
no dedicated database-specific processes or threads that execute
SQL queries. Consequently, if SQLite blocks during I/O operations,
the application thread also blocks.

SQLite has gained widespread adoption across diverse use cases,
solidifying its position as the most widely deployed database solu-
tion [6]. As shown in Figure 1, its architecture has two main parts:
the core and the backend. The core consists of the SQLite C API
interface for applications, an SQL command processor, and a virtual
machine that executes SQL queries. The backend consists of a B-tree
access module, a pager that brings pages from disk to memory, and
an OS interface for performing I/O. While embedding SQLite into
the serverless runtime seems obvious for co-locating computing
and data [9], its blocking I/O architecture makes it challenging.

We now present an overview of these challenges by taking a
shallow dive into what happens when an application executes the
query SELECT * FROM users. This query performs a full table
scan on a table users. An application first opens a database with
the sqlite3_open() function. As SQLite uses files for storing the
data, the sqlite3_open() function invokes the low level OS I/O,
such as POSIX open, for opening the file. The application then
prepares a SQL statement using the sqlite3_prepare() function
that transforms SQL statements such as SELECT and INSERT into

2



sequences of bytecode instructions. The application then executes
the statement with the sqlite3_step() function.

The sqlite3_step() function executes the sequence of byte-
code instructions until the query produces a row to read, or it com-
pletes. When there is a row, the function returns the SQLITE_ROW
value and when the statement is complete, the function returns
SQLITE_DONE. The sqlite3_step() function internally calls into
the backend pager, traversing the database B-trees representing
tables and rows. If a B-Tree page is not in the SQLite page cache, the
page has to be read from disk. SQLite uses synchronous I/O such
as the read system call in POSIX to read the page contents from
disk to memory, which means the sqlite3_step() function blocks
the kernel thread, requiring applications to utilize more threads to
perform work concurrently to the I/O wait.

Synchronous I/O can lead to increased contention among appli-
cations for computing and I/O resources, and also incur increased
latency. The increased latency can make serverless environments
unsuitable for latency-critical edge-native applications, while the
increased contention hampers multi-tenancy. This can lead to ineffi-
cient resource utilization and consequently higher operational costs
to the customers of serverless platforms. Consequently, the costs
incurred by SQLite’s synchronous I/O are elevated in serverless
environments.

Towards asynchronous I/O with io_uring
The traditional POSIX I/O system calls read() and write() are
synchronous, which means that the thread making the system call
will block until I/O is complete. This blocking is detrimental to con-
currency and parallelism because it causes the application to wait,
thereby reducing the overall utilization of computing resources.

The io_uring subsystem in the Linux kernel provides an in-
terface for asynchronous I/O. Its name has its roots in the ring
buffers shared between user space and kernel space that alleviate
the overheads of copying buffers between them [3]. It allows the
application to submit an I/O request and concurrently perform
other tasks until it receives a notification from the OS on the com-
pletion of the I/O operation. With io_uring, the application first
calls the io_uring_setup() system call to set up two memory
regions: the submission and completion queues. The applications
then submit I/O requests to the submission queue and call the
io_uring_enter() system call to tell the OS to start processing
the I/O requests. However, unlike the blocking read() and write()
calls, io_uring_enter() does not block the thread by returning
control to the userspace. The application can now perform other
work concurrently and periodically poll the completion queue in
userspace for I/O completion.

Replacing the POSIX I/O calls with io_uring is not trivial, and
applications that use blocking I/O must be re-designed for the
asynchronous I/O model of io_uring. Specifically, applications
now need to handle the situation of I/O submission in their control
flow. In the case of SQLite, the library needs to return control to
the application when I/O is in flight.

In summary, serverless edge platforms solve the problem of location-
agnostic computing. However, as many real-world applications need
to manage state and access data, serverless runtime and database
co-design is needed to retain the latency advantage. SQLite as an

embedded database management system is an excellent fit, but its
synchronous architecture makes it suboptimal for integrating with
the serverless runtime. We, therefore, need to rearchitect SQLite for
asynchronous I/O to allow high concurrency and multitenancy, which
we discuss in the next section.

3 OUR SOLUTION: LIMBO
We posit refactoring SQLite’s architecture for asynchronous I/O
to facilitate serverless runtime co-design. As shown in Figure 1,
our solution, Limbo, removes interaction with the OS interface for
I/O. Instead, the application provides an I/O module to the library,
which the library calls to perform I/O such as read or write B-tree
pages. We have implemented an I/O module using io_uring, which
provides asynchronous I/O support on Linux, but the mechanism
is agnostic to the I/O interface. The virtual machine, b-tree, and
pager components are changed to accommodate for asynchronous
I/O with two building blocks:

• Asynchronous bytecode instructions to avoid blocking in
the library.

• Decoupling query and storage engines to facilitate the co-
design of the database and serverless runtime.

Limbo retains the interface and SQL command processor compo-
nents of SQLite. In the current version of Limbo, they are con-
ceptually the same; we reimplemented them in Rust using the
sqlite3-parser package, which is a translation of the SQLite
parser from C to Rust. However, in the future, we are considering
reusing more SQLite components for compatibility.

3.1 Bytecode instructions for asynchronous I/O
When the SQLite virtual machine executes instructions to traverse
the B-tree, the pager module may have to perform I/O to read the
pages into memory. Similarly, when the virtual machine commits a
transaction, it must write pages to the disk. To avoid blocking in the
library, we propose to change the SQLite bytecode instruction set to
provide asynchronous variants for instructions that perform I/O. In
the example presented in Figure 2, the blocking Open, Rewind, and
Next instructions are replaced by their non-blocking counterparts:
OpenRead is replaced by OpenReadAsync and OpenWaitAsync,
Rewind is replaced by RewindAsync and RewindWait, and Next is
replaced by NextAsync and NextWait.

For brevity, we delve into the details of only one instruction, Next.
The Next instruction advances a cursor to point to the next avail-
able row, and may need to read b-tree pages from the disk. In Limbo,
the SQL compiler generates a pair of instructions NextAsync and
NextAwait, instead of Next. The NextAsync instruction submits
I/O asynchronously and returns from the sqlite3_step() func-
tion with a SQLITE_IO result to indicate that I/O was submitted.
The application can then either call into sqlite3_step() again to
execute NextAwait to block on the I/O, or keep performing other
operations until the I/O is complete. An external I/O dispatch loop
such as io_uring notifies the application on I/O completion.

3.2 Decoupling query and storage engines
The asynchronous architecture eliminates blocking and improves
concurrency in the serverless runtime, allowing for more tenants.
However, it is also essential to decouple the query and storage

3



(a) SQLite bytecode output for SELECT * FROM users (b) Limbo bytecode output for SELECT * FROM users

Figure 2: Bytecodes for Asynchronous I/O. Limbo retains the registers used by the SQLite bytecode, and the key differences are that the I/O
operations have their Async and Wait counterparts. In this example, OpenRead is replaced by OpenReadAsync and OpenWaitAsync; Rewind is
replaced by RewindAsync and RewindWait; Next is replaced by NextAsync and NextWait. The above output is obtained for a table created using
CREATE TABLE users (id INT PRIMARY KEY, username TEXT).

engines to minimize query latency and maximize the density of
functions per CPU and DRAM.

In Limbo, I/O is external to the database library with a virtual I/O
module. The application provides and implements this virtual I/O
module. In Figure 1, the serverless runtime provides an I/O module
that is based on io_uring. The database library performs I/O by
submitting an I/O request to the io_uring submission queue via
this I/O module, and it then returns control to the runtime. The
runtime then polls io_uring completion queue as part of its event
loop. When I/O completes, the runtime can resume control to the
database library. The decoupling of the query engine, which is
implemented in the database library, and storage, which is handled
external to the library, is the key element in enabling co-design
between the runtime and the database. This decoupling is essential
because it eliminates blocking and allows the runtime to efficiently
implement multitenancy.

4 PRELIMINARY EVALUATION
The goal of our evaluation is to answer the question: what is the
impact of synchronous and asynchronous I/O in query tail latency?

4.1 Methodology
To answer this question, we built a microbenchmark to experimen-
tally compare the performance of Limbo, our prototype, with SQLite.
For both systems, we benchmark a scenario where we simulate a
multi-tenant serverless runtime where each tenant is a serverless
function that accesses their own database, and executes a SELECT *
FROM users LIMIT 100 SQL query 1000 times. For the benchmark,
we vary the number of tenants from 1 to 100 in increments of 10,
and measure the latency distribution using HdrHistogram [14] on
an AMD Ryzen 9 3900XT 12-Core Processor machine.

For SQLite, we used the rusqlite library that provides Rust
bindings for SQLite. To simulate a multi-tenant serverless runtime,
the microbenchmark creates a thread per tenant to represent a
resident and executable function in the runtime. In each thread, we

open a connection to a separate 1MiB SQLite database file, and we
execute the SQL query.

For Limbo, we use the same basic approach as for SQLite and per-
form the SQL query 1000 times, recording the latency distribution
with HdrHistogram. However, as I/O is asynchronous, we use Rust
coroutines instead of threads for tenants. Furthermore, we simulate
an I/O loop by limiting the number of iterations one coroutine can
run to ten and when a query returns an I/O status, we schedule
another coroutine instead of blocking.

4.2 Results
In Figure 3 we present the median, 90𝑡ℎ , 99𝑡ℎ , and 99.9𝑡ℎ percentiles
of the query latency for a given number of threads. For SQLite, we
observe that the query latency does not degrade gracefully with
the number of threads. Instead, we observe jumps in the latency
percentiles when the number of threads is close to a multiple of
the number of cores, which highlights that synchronous I/O limits
multi-tenancy. For instance, in Figure 3(d) we observe jumps in the
latency when the number of tenants increases from 10 to 20, from
20 to 30, from 40 to 50, and from 60 to 70; the jump is the latency
when the number of tenants increases from 10 to 20 is seen in all
the plots in Figure 3. We plan to investigate the reason for the fall
in latency, observed in Figure 3(d), when the number of tenants
increases beyond 80.

Our results show that the number of tenants that concurrently
use SQLite may be limited by the number of processing cores, and
increasing the number of tenants beyond the number of cores can
increase the tail latency experienced by the tenants. In contrast,
our preliminary evaluation for Limbo shows up to a 100x reduc-
tion in tail latency, suggesting that our approach is conducive to
runtime/database co-design for low latency.

5 DISCUSSION AND RELATEDWORK

SQLite in serverless computing. We are not the first to consider
bringing SQLite to the serverless environments. Jonas et al. [9]

4



10 20 30 40 50 60 70 80 90 100

Number of Tenants

104

105

106

107

L
at

en
cy

(µ
s)

SQLite

Limbo

(a) Percentile = 50

10 20 30 40 50 60 70 80 90 100

Number of Tenants

104

105

106

107

L
at

en
cy

(µ
s)

(b) Percentile = 90

10 20 30 40 50 60 70 80 90 100

Number of Tenants

104

105

106

107

L
at

en
cy

(µ
s)

(c) Percentile = 99

10 20 30 40 50 60 70 80 90 100

Number of Tenants

104

105

106

107

L
at

en
cy

(µ
s)

(d) Percentile = 99.9

Figure 3: Query latency (logarithmic scale). Each tenant executed ’SELECT * FROM users LIMIT 100’ 1000 times. We log the latency for
each query executed by each tenant. We observe that SQLite can limit multi-tenancy, and Limbo shows up to a 100x reduction in tail latency.

explored integrating stateful databases with serverless computing,
highlighting the mismatch between the ephemeral nature of server-
less functions with a requirement for persistent storage, connection-
oriented protocols, and reliance on the sharedmemory of traditional
databases such as PostgreSQL, Oracle, and MySQL. They explored
solving the issue by running the SQLite embedded database as part
of a serverless runtime using an in-memory transactional caching
layer to interpose between SQLite and a cloud provider network
filesystem, overcoming the issues with traditional databases. The
approach enabled them to achieve over 10 million transactions per
minute but only 100 transactions per minute for writes on a modi-
fied TPC-C benchmark, which made the approach unpalatable as a
general-purpose database.

Schleier-Smith et al. [11] explored using unmodified SQLite in the
serverless environment by running it on top of a network filesystem
specifically targeted for function as a service environment, FaasFS.
Although their approach showed significant performance improve-
ments over traditional network file systems (NFS), achieving nearly
30x higher transactions per minute in some configurations, it also
revealed limitations in increased transaction abort rates due to con-
current modifications and the inefficiency of layering transactional
systems. Their results suggest that SQLite on FaaSFS is a viable
solution for read-heavy workloads.

Although our primary focus is on low latency, we believe we can
improve the write throughput by co-designing the serverless run-
time and database with massive multitenancy using asynchronous
I/O, making SQLite a viable option for serverless computing.

Moving data to code instead of code to data. The problem with
stateless serverless applications and data access, sometimes referred
to as data shipping problem [16], is an open problem for serverless
computing. The Shredder system solves the problem by allowing
compute on storage nodes, essentially shipping code to data [16].

In contrast, we aim to address an opposite problem: shipping
data to code. Our solution allows application logic to remain the
same as we provide the illusion of the database being in the same
memory space as the application, although I/O can still be external
to the serverless runtime. To do that, we follow the same approach
as Aurora to decouple storage and compute by decoupling query
processor, transactions, and caching from logging and storage [15].
However, we virtualize logging and storage via an I/O module,
which the serverless runtime implements in whatever way it sees
fit. Our solution, Limbo, is built using io_uring, which assumes a

volume, and our approach can be leveraged to offload storage to
an external storage node for scalability. Furthermore, our approach
allows the same architecture to be used outside serverless runtimes
in, for example, web browsers.

Benefits of asynchronous I/O. Making database library query
execution asynchronous, enables application to multitask while I/O
is in progress. This opens up opportunities for serverless runtimes
to efficiently implement multitenancy. Furthermore, from the SQL
query engine perspective, asynchronous I/O also enables efficient
remote I/O operations. For example, this approach allows a server-
less architecture similar to Aurora where storage is offloaded to a
remote server for scalability [15], but with the low latency of an
embedded database when data is cached.

Privacy and security. Integrating a database in a serverless run-
time introduces some new privacy and security challenges.Whereas
we can secure a traditional database in a cloud environment by lim-
iting the set of data a tenant can access, integrating the database to
a runtime with security vulnerabilities makes much more data po-
tentially accessible to malicious attackers. Therefore, co-designing
databases and serverless runtimes requires mechanisms for ensur-
ing data integrity and confidentiality. Serverless runtimes have
building blocks to address this problem, and they already isolate
tenants. For instance, they offer massive multi-tenancy especially
in the edge deployments using lightweight isolation mechanisms
such as V8 isolates. This isolation approach can be extended to data
residing in the memory space of the runtime by leveraging memory
enclaves or memory protection at the virtual machine layer, such
as the JavaScript or WebAssembly JIT compiler or interpreter.

6 FUTUREWORK

SQLite compatibility.Compatibility with SQLite can be important
for some applications to adopt our proposed solution. Our current
prototype is a clean-slate implementation of SQLite, except for
the SQL parser that we reuse from SQLite. A more compatible
solution would be to reuse the SQLite front-end, including the
code generator, and reimplement the backend starting from the
virtual machine layer. However, our experience so far is that SQLite
is only partially modular, which can make reusing the front end
hard. Furthermore, the backend needs to propagate I/O status to
sqlite3_step() API function for callers to take advantage of the

5



non-blocking interface, which may further complicate reuse. We,
therefore, believe a clean-slate implementation may be needed.
Compatibility with SQLite has to be achieved through a test suite
that runs both on SQLite and Limbo.

Evaluation methodology. We have so far shown that moving to
an asynchronous I/O model can improve the tail latency of SQL
queries using a micro-benchmark. We plan to evaluate tail latency
impact using more realistic workloads. We also plan to measure
the impact on throughput. These evaluations will be done using
the TPC-H benchmark suite, which consists of ad-hoc business
oriented queries with concurrent data modifications, to measure
both the throughput and latency.

Furthermore, in our micro-benchmark, there is only a single
reader. We will also investigate what happens to tail latency and
throughputwhen there arewriters, and alsowhen there aremultiple
readers. This evaluation will also be done to study the transaction
isolation and transaction coordination. For example, we need trans-
action coordination when there are multiple tenants writing to
the same database from a single instance of a serverless runtime,
and we need distributed transaction coordination when there are
writers from multiple runtime instances.

Impact on serverless runtime architecture. The stateless nature
of serverless functions implies that each invocation of the function
can be executed on any available instance within the provider’s
serverless runtime environment. Integrating an in-process database
to the serverless runtime implies either ensuring the database is
accessible from every runtime instance or the client requests are
routed to run on a subset of the runtime instances. With serverless
edge computing in particular, data locality is important for low
latency. Therefore, we anticipate that for optimal integration of an
in-process database, the serverless runtime architecture needs to
address these issues.

7 CONCLUSION
Serverless runtimes need to be co-designed with databases to retain
their latency advantage for edge-native applications. Embedding
in-process databases such as SQLite into the serverless runtime
eliminates the need for network round-trips, however SQLite’s syn-
chronous architecture can make the embedding counter-productive.

In this article, we posit changing the SQLite virtual machine to
provide asynchronous bytecode instructions. We show that our
modifications can help serverless runtimes towards facilitating
database and serverless runtime co-design.

REFERENCES
[1] Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. 2019. Fast key-value

stores: An idea whose time has come and gone. In Proceedings of the Workshop
on Hot Topics in Operating Systems (Bertinoro, Italy) (HotOS ’19). Association for
Computing Machinery, New York, NY, USA, 113–119. https://doi.org/10.1145/
3317550.3321434

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
Virtualization for Serverless Applications. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20). USENIX Association, Santa
Clara, CA, 419–434. https://www.usenix.org/conference/nsdi20/presentation/
agache

[3] Jens Axboe. 2019. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf.
[4] Cloudflare. 2023. Workers. https://workers.cloudflare.com.

[5] Cloudflare. 2024. Workers KV. https://developers.cloudflare.com/kv/.
[6] Kevin P. Gaffney,Martin Prammer, Larry Brasfield, D. RichardHipp, Dan Kennedy,

and Jignesh M. Patel. 2022. SQLite: Past, Present, and Future. Proc. VLDB Endow.
(2022).

[7] D. Richard Hipp. 2023. SQLite. https://www.sqlite.org/index.html.
[8] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable Server-

less Computing for Latency-Sensitive, Interactive Microservices. In Proceed-
ings of the 26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 152–166. https:
//doi.org/10.1145/3445814.3446701

[9] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.
2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf.

[10] Mahadev Satyanarayanan. 2023. Sinfonia: Cross-Tier Orchestration for Edge-
Native Applications. https://www.youtube.com/watch?v=QQKjjf3veDA.

[11] Johann Schleier-Smith, Leonhard Holz, Nathan Pemberton, and Joseph M Heller-
stein. 2020. A FaaS File System for Serverless Computing. arXiv preprint
arXiv:2009.09845 (2020).

[12] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, MohammedDanish Shaikh,
Shivaram Venkataraman, and Aditya Akella. 2021. Atoll: A Scalable Low-Latency
Serverless Platform. In Proceedings of the ACM Symposium on Cloud Computing
(Seattle, WA, USA) (SoCC ’21). Association for Computing Machinery, New York,
NY, USA, 138–152. https://doi.org/10.1145/3472883.3486981

[13] SQLite. 2023. About SQLite. https://www.sqlite.org/about.html.
[14] Gil Tene. 2023. HdrHistogram: A High Dynamic Range Histogram. http:

//hdrhistogram.org/.
[15] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,

Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
1041–1052. https://doi.org/10.1145/3035918.3056101

[16] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing the
Gap Between Serverless and its State with Storage Functions. In Proceedings
of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’19).
Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.
org/10.1145/3357223.3362723

6

https://doi.org/10.1145/3317550.3321434
https://doi.org/10.1145/3317550.3321434
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://kernel.dk/io_uring.pdf
https://workers.cloudflare.com
https://developers.cloudflare.com/kv/
https://www.sqlite.org/index.html
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3445814.3446701
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf
https://www.youtube.com/watch?v=QQKjjf3veDA
https://doi.org/10.1145/3472883.3486981
https://www.sqlite.org/about.html
http://hdrhistogram.org/
http://hdrhistogram.org/
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/3357223.3362723
https://doi.org/10.1145/3357223.3362723

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Our Solution: Limbo
	3.1 Bytecode instructions for asynchronous I/O
	3.2 Decoupling query and storage engines

	4 Preliminary evaluation
	4.1 Methodology
	4.2 Results

	5 Discussion and Related Work
	6 Future work
	7 Conclusion
	References

