
Partition-Aware Packet Steering Using XDP and eBPF for
Improving Application-Level Parallelism

Pekka Enberg
University of Helsinki

Ashwin Rao
University of Helsinki

Sasu Tarkoma
University of Helsinki

ABSTRACT
A single CPU core is not fast enough to process packets arriving
from the network on commodity NICs. Applications are there-
fore turning to application-level partitioning and NIC offload to
exploit parallelism on multicore systems and relieve the CPU. Al-
though NIC offload techniques are not new, programmable NICs
have emerged as a way for custom packet processing offload. How-
ever, it is not clear what parts of the application should be offloaded
to a programmable NIC for improving parallelism.

We propose an approach that combines application-level parti-
tioning and packet steering with a programmable NIC. Applications
partition data in DRAM between CPU cores, and steer requests to
the correct core by parsing L7 packet headers on a programmable
NIC. This approach improves request-level parallelism but keeps
the partitioning scheme transparent to clients. We believe this
approach can reduce latency and improve throughput because it
utilizes multicore systems efficiently, and applications can improve
partitioning scheme without impacting clients.

CCS CONCEPTS
• Software and its engineering → Operating systems; Com-
munications management; Multiprocessing / multiprogramming
/ multitasking.

KEYWORDS
XDP, eBPF, Packet Steering, Parallelism, Partioning
ACM Reference Format:
Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. 2019. Partition-Aware
Packet Steering Using XDP and eBPF for Improving Application-Level
Parallelism. In 1st ACM CoNEXT Workshop on Emerging in-Network Comput-
ing Paradigms (ENCP ’19), December 9, 2019, Orlando, FL, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3359993.3366766

1 INTRODUCTION
A single CPU core is not fast enough to serve packets arriving at
line rate. For example, the arrival rate of packets on a 40 Gbps
NIC is faster than the rate at which a single CPU core can access
its last-level cache (LLC), and this difference in operating speeds
can prevent the CPU from keeping up with the network [15]. The
performance gap is further expected to increase with 400 Gbps and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ENCP ’19, December 9, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7000-4/19/12. . . $15.00
https://doi.org/10.1145/3359993.3366766

DRAM

CPU 0 CPU 1

A, B, C D, E, F

Programmable NIC

request(A),
request(B),
request(D)

request(D)request(A)
request(B)

Figure 1: Partition-aware packet steering on a pro-
grammable NIC. The application partitions its resources and
the data in DRAM between CPU cores, and a programmable NIC
steers requests to the target CPU core by inspecting protocol headers.
This allows request processing to run independently on each CPU,
while keeping partitioning transparent to client. For the example
key-value store shown in this figure, the NIC parses keys from client
requests.

beyond on the horizon. Fundamentally, the time budget to process a
single packet is shrinking radically, forcing applications to embrace
parallel processing and NIC offload capabilities.

Application-level partitioning is one approach to parallelize re-
quest processing on multicore systems [23, 35, 37]. In the thread-
per-core model, applications run only one OS thread per CPU core
and also partition the data in DRAM between the cores [7, 35]. This
enables the CPU cores to run independently by eliminating synchro-
nization for data access and avoiding OS-level locking. However,
steering requests to the CPU core that manages request data either
requires clients to specify the partition [14, 23] or uses CPU cycles
for the steering [6, 35].

Offloading the network processing to the NIC helps conserve
CPU cycles [5, 27], and NICs are also starting to support the abil-
ity to run arbitrary programs and customize the offload. These
programmable NICs come in different flavors, ASIC-based, FPGAs,
special-purpose cores (e.g. NPU), or multicore system-on-chips
(SoC) [8, 31, 36], but their objective is the same: provide programmable
packet processing on the NIC before packets are forwarded down
to the OS network stack. Programmable NICs have a significant per-
formance advantage over host CPU for packet processing because
they can be highly specialized and do not have to wait for packet
data to DMA over the I/O bus to DRAM. However, the emergence
of programmable NICs raises a question: What should applications
offload to a programmable NIC for improving parallelism?

https://doi.org/10.1145/3359993.3366766
https://doi.org/10.1145/3359993.3366766

ENCP ’19, December 9, 2019, Orlando, FL, USA Pekka Enberg, Ashwin Rao, and Sasu Tarkoma

We propose an approach for improving parallelism that com-
bines application-level partitioning and packet steering with a pro-
grammable NIC (§3). As shown in Figure 1, the application uses
a thread-per-core approach in which data in the DRAM is parti-
tioned between threads that are pinned to CPU cores. In one of
our previous works, we highlighted that packet steering is a per-
request overhead in the thread-per-core model, and this overhead
could be address with the help of a programmable NIC [7]. A pro-
grammable NIC runs a program that parses application-specific
protocol headers, including L7 headers, to steer the packet to the
thread responsible for serving it. For example, for a key-value (KV)
store such as Memcached, a program running on the NIC parses
the Memcached protocol headers to determine a request key and
forwards the packet to a CPU core that manages that keys (§3.3).
We propose to implement our approach using Linux’s Express Data
Path (XDP) interface, which is available on a Linux. XDP combines
programmable packet processor with kernel-bypass [10], and sup-
ports offload to a programmable NIC using eBPF [18]. We present
an overview of the XDP interface and eBPF in §2.
Our contributions are as follows.
– We propose a NIC-CPU co-design using eBPF and XDP on Linux,
where the NIC performs packet steering and CPU executes ap-
plication logic (§3). As an example application, we describe the
design and implementation of a key-value store using eBPF and
XDP. We believe this approach provides a practical solution for
accelerating network-intensive applications.

– We discuss the limitations and future research directions of our
proposed NIC-CPU co-design approach in §4. Specifically, we
analyze a) how applications beyond key-value stores can take
advantage of this approach, b) how NIC-based packet steering
can improve application-level partitioning, and c) what are the
limitations of eBPF and XDP for NIC offload.
Previous approaches to application-level partitioning either re-

quire the clients to be aware of the partition scheme, or require
expensive inter-thread communication. MICA [23] and HERD [14]
expose application partitioning scheme to clients, which makes it
challenging to improve partitioning without impacting the clients.
Minos implements a size-aware partitioning scheme that is trans-
parent to clients, but it requires inter-thread communication over a
software queue [6]. Similarly, the Seastar framework steers requests
in user space [35] but requires expensive CPU-intensive polling
to avoid thread wakeups [19]. Our proposed approach keeps the
partitioning scheme transparent similar to software steering but
maintains low request steering overhead, similar to hardware steer-
ing. It complements Floem [30], a data-flow programming language
for NIC-CPU co-design, which can be used for steering packets
in sharded applications. Furthermore, our approach to offloading
only packet steering to a programmable NIC is easier to adopt for
general purpose applications than previous approaches that offload
whole applications to a programmable NIC using a special-purpose
programming language such as OpenCL [20].

2 BACKGROUND
We believe that combining application-level partitioning with packet
steering can improve request-level parallelism. To motivate our ap-
proach, we begin by discussing why parallel processing and NIC

System Partitioning Steering Hardware
Seastar [35] CPU core HW/SW RSS
MICA [23] CPU core HW Flow Director
HERD [14] OS process HW RDMA
Minos [6] Size-aware HW/SW RSS and Flow Director
KV-Direct [20] None HW FPGA
NetCache [13] Server HW ASIC
Table 1: Partitioning and packet steering implementations.
The data is partitioned either per-CPU core, or per OS process, or is
based on the size of requested items, or per server. The steering of
requests is done either using a combination of hardware software co-
design, or solely in the hardware.

offload are critical. We then highlight that kernel-bypass network-
ing is a key enabler for this approach. Finally, we give an overview
of the Express Data Path (XDP) networking interface [10] and the
extended Berkeley Packet Filter (eBPF) virtual machine [18], which
make our proposed application-level partitioning with a packet
steering approach practical on Linux.

Parallel processing. Applications must embrace parallel process-
ing because single-threaded CPU core speeds have stagnated [9, 34],
but NIC speeds are getting faster [15]. To perform parallel request
processing, applications use OS threads, but they have overheads
from synchronization and context switching. OS system calls can
block an OS thread, which is why applications need to create more
threads than CPU cores. However, having a large number of threads
incurs high overheads because of context switching costs and mem-
ory footprint. To address these overheads, applications are increas-
ingly leveraging application-level partitioning [14, 23, 35].

CPU and NIC offload co-design. State-of-art systems, summa-
rized in Table 1, use partitioning, packet steering, and NIC offload
for high performance, but their approaches differ from each other.
KV-Direct [20] and NetCache [13] offload the whole application
to hardware for high performance. However, systems that want
to use the CPU for application logic have to use simple partition-
ing schemes for hardware steering. For example, MICA [23] and
HERD [14] partition by CPU core and by OS process, and use hard-
ware steering provided by commodity multi-queue NIC or RDMA.
Seastar [35] and Minos [6] use a combination of hardware and
software steering; they either support commodity POSIX APIs or
provide more advanced partitioning schemes. There is a gap in
systems that want to combine CPU use with NIC offload while en-
abling advanced application-level partitioning, which our proposed
approach aims to fill.

Kernel-bypass networking. Traditional in-kernel network stacks
are designed for flexibility, but are a bottleneck for network-intensive
applications for two reasons: (1) they perform too much work per
packet, and (2) their system call interface is too expensive [12, 16,
33, 38]. Traditional network stacks require memory allocation and
locking per packet, which is too heavy-weight for packet process-
ing time budgets of current NICs. Applications receive and trans-
mit data using the POSIX sockets API, which has high overheads
from system call costs and copying. Kernel-bypass networking has
emerged as a solution to eliminate these overheads [12, 24, 33].
With kernel-bypass networking, the OS is eliminated from data

Partition-Aware Packet Steering using XDP and eBPF ENCP ’19, December 9, 2019, Orlando, FL, USA

Process

XDP
Program

NIC queue

N
IC

OS
Network

Stack

Process

NIC queue
H
ar
d
w
ar
e

K
er
n
el

U
se
rs
p
ac
e

(a) XDP via POSIX sockets

Process

XDP
Program

NIC queue

N
IC

Process

NetworkStack NetworkStack

NIC queue

H
ar
d
w
ar
e

K
er
n
el

U
se
rs
p
a
ce

(b) XDP via kernel-bypass interface

Process

NIC queueN
IC

Process

XDP
Program

NetworkStack NetworkStack

H
ar
d
w
ar
e

K
er
n
el

U
se
rs
p
ac
e

(c) XDP via NIC offload

Figure 2: XDP and eBPF configurations. Applications can use XDP and eBPF via (a) POSIX sockets without bypassing the kernel, (b) the
AF_XDP kernel-bypass interface, or (c) hardware offload with a programmable NIC.

plane, and the NIC leverages DMAs to write packets to a memory
buffer that applications consume directly.

XDP and eBPF. The XDP interface enables the implementation of
high-performance networking applications on Linux by combining
programmable packet processing and kernel-bypass [10]. Appli-
cations implement custom packet processing in a programming
language such as C, which compiles to the eBPF virtual machine
instruction set. These eBPF programs run before the OS forwards
the packets to the in-kernel network stack. The OS provides an
in-kernel virtual machine for eBPF programs, but they can also
be offloaded to a programmable NIC [18]. As shown in Figure 2,
XDP supports multiple configurations: POSIX sockets API, AF_XDP
kernel-bypass, and NIC offload; the AF_XDP socket type in XDP
allows applications to by-pass the OS network stack entirely if
needed. As eBPF is programming language agnostic, applications
can reuse the same partitioning code in the XDP program and the
application. For example, applications can use the same application
code implemented in C for request steering or run existing packet
processors implemented in the P4 [3] programming language on
XDP [38]. The availability of XDP and eBPF in a commodity OS
makes application-level partitioningwith packet steering a practical
approach for applications.

3 APPLICATION-LEVEL PARTITIONING AND
PACKET STEERING

Applications must embrace parallelism to take advantage of multi-
core CPUs. In the thread-per-core approach to improve parallelism,
applications restrict the number of application threads to the num-
ber of CPU cores, and partition application data in DRAM and the
resources between the CPU cores to eliminate thread synchroniza-
tion and OS-level locks. However, current solutions are unable to
steer packets to the CPU core that can independently serve the
request without exposing the partitioning schema to its clients.
We now show how application-level packet steering with a pro-
grammable NIC can solve this problem.

3.1 Partitioning in the thread-per-core model
Partitioning is increasingly being adopted as a strategy to improve
application-level parallelism. In the thread-per-core approach, an ar-
riving packets needs to be steered to the CPU core that can serve the

request. This approach allows the CPU cores to run independently
by eliminating the need to synchronize threads on application-level
data access, and avoiding OS-level locking (in some cases). However,
steering requests to the correct CPU core either requires clients to
specify the partition in the request [23], or the application threads
need to redirect the requests. This is because the approaches to
steer the packets using traditional non-programmable NICs are re-
stricted to L2-L4 protocol headers. A programmable NIC can solve
the problem of request steering by inspecting L7 packet headers.

In spite of its benefits, the thread-per-core approach for partition-
ing data and resources has its limitations. For skewed workloads,
this approach can overload some CPU cores while leaving the oth-
ers underutilized. This can be addressed by binning CPU cores in
clusters, and making each CPU cluster responsible for a partition
of the data. Each CPU core cluster could use the traditional shared-
memory approach which is known to scale to small core counts [11].
The CPU core clusters could also be partitioned around sub-NUMA
clusters, which groups CPU cores by memory controllers [28].

3.2 Partition-aware packet steering
Request processing is performed in different stages across the NIC,
the kernel, and user space as shown in Figure 3(a). The NIC first
performs L1 processing to queue packets in the NIC RX queues and
then performs packet steering via RSS or Flow director by L2-L4
packet headers. Finally, the OS network stack performs protocol
processing and hands over the packet to user space for L7 protocol
processing. Note that the kernel forwards a packet to a user space
thread based on its own packet steering policy, and this steering
has no knowledge of application-specific partitioning. When data
is partitioned using the thread-per-core approach, the user space
thread which receives the packet needs to first forward it to the
remote thread responsible for serving the packet, and then notify
the remote thread [7, 35].

We measured the time required to notify a thread on an Intel
Xeon E5-2686 v4 @ 2.30GHz with two non-uniform memory access
(NUMA) nodes running Ubuntu 18.04.3 LTS with Linux 4.15.0-1051-
aws. In our experimental setup, we had two threads running on
different CPUs on the system. The first thread notifies the second
thread bywriting to an eventfd file descriptor that the second thread
reads. The thread notification time is the time difference between
the call to the write system call and the return of the read system

ENCP ’19, December 9, 2019, Orlando, FL, USA Pekka Enberg, Ashwin Rao, and Sasu Tarkoma

Kernel User space

Service requestProtocol
processingPacket queuing

NIC

Packet steering

NIC

L1 L2-L4 L2-L4 L7

(a) Request processing flow with the OS network stack.

User space User space

Service requestProtocol
processingPacket queuing

NIC

Packet steering

NIC or kernel

L1 L2-L7 L2-L4 L7

(b) Request processing flow with XDP and eBPF.

Figure 3: Request processing. Packets traverse through multi-
ple stages–packet queuing, packet steering, and protocol processing—
before the application thread services the request; L1-L7 denote the
seven layers of the OSI model.

3.5 4.0 4.5 5.0 5.5 6.0
Thread notification time (µs)

0.00

0.25

0.50

0.75

1.00

C
D

F

99.90th percentile 99.90th percentile

NUMA local

NUMA remote

Figure 4: Thread notification time. The cumulative distribution
function (CDF) of the thread notification time highlights that the time
required to notify a user space thread is significantly larger than the
time between successive packet arrivals on a fast NIC; a 40 Gbps NIC
can receive a 64 byte packet close to every 12 ns [15].

call. As shown in Figure 4, the 99.9th percentile of thread wakeup
delay on the same NUMA node is 4.32 µs and 6.09 µs on a remote
NUMA node. In contrast, a 40 Gbps NIC can receive a 64 byte packet
close to every 12 ns [15].

As shown in Figure 3(b), a programmable NIC with XDP and
eBPF can perform partition-aware packet steering. The NIC per-
forms L1 processing to queue packets, and a program running on
the NIC inspects L2-L7 protocol headers to steer packets directly
to the CPU core that can serve the request. The user space thread
then performs the protocol processing and serves the request. For
example, in a key-value store, the partition identifier can be the
request key, which determines the target of the operation requested
by a client. In an RPC call, the partition identifier can be the name of
the RPC function or a parameter of the RPC call, which determines
a service thread that implements the RPC function.

If an application workload does not access the resource partition
and data sets uniformly, the NIC packet steering can perform load
balancing between the CPU cores. For example, instead of steering
packets to a single CPU core, the NIC can round-robin request
processing between all CPU cores. The trade-offwith load balancing

is that the request-processing CPU cores must either access CPU
remote memory or use software steering to complete the request.
Another possible optimization at NIC level is response caching. For
example, if processing a request needs a lot of CPU cycles, caching
the response at NIC level can be beneficial. For requests that are not
CPU-intensive, caching responses can still improve performance,
because caching eliminates transferring data over the PCIe bus.
However, the trade-off with response caching that the NIC program
needs more application-specific knowledge to perform the cache
lookup.

3.3 Example: A Key-Value Store
Key-value (KV) stores are a widely understood topic [6, 13, 14, 20,
23]. Although KV stores have been criticized recently [2], they serve
as an easy to understand example of a network-intensive applica-
tion. We believe that KV stores can benefit from application-level
partitioning and packet steering and that the lessons are applicable
to a broader range of networked applications that need to embrace
parallelism.

Request processing overview. For our discussion, we assume
two types of requests, get and set, both of which contain a request
key k . Request processing in the KV store starts when a packet
containing the client request arrives on the NIC. The NIC forwards
the packet to one if its RX queues, depending on how the device
driver configures the NIC. The NIC obtains a DMA descriptor from
the NIC RX queue, and DMAs packet data to a region of the DRAM
pointed to by the DMA descriptor. The device driver notices that
a new packet has arrived and forwards it to the network stack.
The network stack performs the L2-L4 protocol processing, after
which it hands over the packet to the application. The application
parses the request and performs necessary operations. For example,
for a get request, a value is looked up from a data structure by the
request key. Finally, a response message is generated for the request
and handed over to the network stack, which performs protocol
processing and hands over the packet to the NIC.

Design. The design goals for our KV store are as follows.

– Improve hardware utilization with CPU and NIC offload.
– Exploit multicore CPU parallelism efficiently.
– Do not expose application-level partitioning to clients.

As shown in Figure 1, we propose a design that combines application-
level partitioning and packet steering with programmable NIC. Sim-
ilar to previous approaches [14, 23], it runs one thread per CPU
core, and it partitions the keyspace in DRAM between the CPU
cores. That is, a partitioning function p(k) maps a key k0 to CPU
Cn , key k1 to CPUCm , and so on. For example, the MICA KV store
partitions the keys by using some bits of the hash of the keys [23].
With this application-level partitioning in place, a program running
on the NIC parses L7 packet headers to determine request keys
and uses the same partitioning function p(k) to steer packets to the
target CPU core. For example, with the Memcache protocol, the
request key is part of the request headers of all operations. The
application thread parses the complete request, performs the re-
quested operation, generates a response, and places it on the NIC TX
queue. The difference to previous approaches is that the NIC steers
packets directly to the target thread. This eliminates overheads

Partition-Aware Packet Steering using XDP and eBPF ENCP ’19, December 9, 2019, Orlando, FL, USA

of software steering approaches, while keeping the partitioning
scheme transparent to clients.

Implementation.We propose to implement our approach using
POSIX APIs for OS threads, memory management, and so on, and
Linux’s XDP interface for networking. The KV store spawns an
OS thread for each CPU core assigned for the application with
pthread_create and allocates memory regions individually for
each CPU core with mmap. The packet steering logic is implemented
as an eBPF program. The KV store uses the AF_XDP socket type to
open a kernel-bypass channel between the XDP subsystem and the
user space threads. The NIC program determines the CPU of a re-
quest key by parsing the L7 protocol headers, looks up the per-CPU
AF_XDP socket (XSK) and uses the bpf_redirect_map function to
forward the packet to the XSK. The userspace process then receives
the packet via the XSK and performs the necessary protocol and
request processing. For example, in the case of Memcached over
UDP, the application needs to parse the UDP headers and the Mem-
cached request, and perform the requested operation such as get or
set, to retrieve or update a value, respectively.

4 DISCUSSION
We propose an approach that combines application-level partition-
ing and packet steering with a programmable NIC. At the same
time, there are various aspects of the approach that we want to
explore.

Other use cases.Wehave proposed an approach to combine application-
level partitioning and packet steering, but only given an example
of a KV store. We have also assumed that the KV store supports re-
quests on a single key, which makes partitioning easy because there
is a simple mapping between the request and a CPU core. However,
such mapping does not exist in many use cases. For example, a
multi-key request and range query possibly need to access data on
multiple CPU cores. It is possible, however, to take advantage of the
programmable packet processor for multi-key requests and range
queries in a different manner. The packet processor can load balance
the requests between multiple cores to eliminate request process-
ing imbalance. For example, the packet processor can round-robin
packet processing on the CPU cores of all the keys. Also, extending
XDP to support packet duplication can allow multi-key requests to
be sent to all the cores required to serve the request.

Partitioning.The partitioning scheme of the thread-per-coremodel
is known to have problems with skewed workloads. For example,
if clients access a subset of the data more than other data, some
CPU cores can be overloaded, whereas the rest of the CPU cores are
underutilized. If partitioning logic is transparent to clients, as in our
proposed approach, it is easier for applications to take advantage
of more complex partitioning. For example, Intel CPUs starting
from the Skylake microarchitecture support sub-NUMA clustering
where CPU cores are partitioned internally into clusters that share
the L3 cache and a memory controller [28]. With application-level
packet steering, it becomes viable to implement a shared-something
model. In a shared-something model, application data is partitioned
by sub-NUMA clustering topology and not by individual cores. Ap-
plication threads running on a cluster of cores can utilize lockless
data structures which scale on small core counts [11].

Packet encryption. Packet encryption imposes a problem for our
proposed approach. Current packet steering approaches leverage
L2-L4 packet headers, which are often unencrypted even if an ap-
plication uses a secure protocol such as TLS to encrypt the rest
of the packet data. However, in our proposed approach, the NIC
uses L7 protocol headers to steer packets, but it cannot do that if
it is unable to access the packet data [31]. One possible solution
to this problem is to decrypt packets at the NIC. As host CPU is a
bottleneck, it makes sense to offload packet decryption to the NIC,
which is already supported by some NICs [4]. An open challenge is
to integrate NIC TLS offloading with XDP to make it available for
eBPF programs. Another possible solution to the issue of steering
encrypted packets is to use homomorphic encryption techniques,
which allow computation on encrypted data. For example, if a
database system already supports secure query processing with
homomorphic encryption [26], packet steering could operate on the
encrypted request key because the rest of the application also oper-
ates on them. It is not clear if homomorphic encryption for packet
steering is feasible, but it is a research direction we think is worth
exploring, because it is already suggested for other programmable
NIC offload functions [31].

XDP and eBPF. We are implementing a prototype KV store using
XDP and eBPF because they are available on Linux and combine
programmable packet processor with kernel-bypass. Although XDP
and eBPF are still under development, they are already a good fit
for implementing our proposed approach. However, some parts
of XDP and eBPF functionality are not clear. We therefore intend
to explore their limits and eliminate them if possible while imple-
menting a prototype. One XDP limitation for our approach is if the
AF_XDP kernel-bypass interface can deliver packets directly to user
space. For example, the Netronome NIC driver does not currently
support redirecting packets from eBPF offload on the NIC directly
to AF_XDP socket or passing information from the NIC to the host
in packet metadata [17]. However, both limitations are addressable
with software changes without changes to the underlying hardware.
Another issue with AF_XDP is that the memory buffer for packets
uses fixed-size chunks. These memory chunks need to be large
enough to accommodate the largest possible packets, which incurs
a high internal fragmentation for small packets. It is not clear how
this limitation can be lifted or mitigated. One advantage of eBPF is
that it is flexible enough to accommodate various parsing identifiers
for request steering.

Performance. We intend to explore the performance of our ap-
proach by implementing a prototype KV store and evaluating its per-
formance against previous solutions such as MICA. Parsing L7 pro-
tocol headers at the NIC is expensive, but it is not clear how much
it eliminates other overheads. However, we know from previous
works, such as MICA and HERD, that combining application-level
partitioning and packet steering improves performance.Furthermore,
in some cases, we can reuse the results of the L7 packet header
parsing in the application code. For example, when determining
the partition of a key, we calculate a hash of the key. With XDP,
we can pass this calculated hash as part of the packet in the user
space thread, and reuse the hash when updating an internal data
structure, for example. Another aspect we want to explore is the

ENCP ’19, December 9, 2019, Orlando, FL, USA Pekka Enberg, Ashwin Rao, and Sasu Tarkoma

impact of scalability limitations of multicore SoC-based NICs [8] to
our approach.

5 RELATEDWORK
Packet steering. Multi-queue NICs support receive-side scaling
(RSS) and Flow Director, which distribute packets to multiple NIC
receive queues [1]. The OS maps the NIC queues to different CPUs,
which enables parallel processing of the packets. However, the
distribution hash function and hash type are fixed in hardware,
which limits application design choices. Programmable RSS pro-
vides a custom packet distribution hash that leverages eBPF [32].
Our proposed approach extends programmable RSS because we
combine packet steering with application-level partitioning and
kernel-bypass. Our partitioned packet steering approach similar to
the one proposed by Floem [30], except we design around Linux
XDP and eBPF subsystems instead of a having a separate compiler.
Floem is a data-flow programming language, compiler, and run-
time that targets NIC-accelerated applications. One of the proposed
NIC offloads approaches with Floem is a CPU-NIC co-design archi-
tecture for sharded applications, where the NIC performs packet
steering, and the CPU executes the application logic, similar to
our proposed approach. In contrast, we focus on how to enable
this co-design approach with the eBPF virtual machine and the
XDP interface, which are available on Linux. We believe that this is
useful to study the limits of existing OS interfaces along with eBPF
and XDP. Our approach also complements iPipe [25] by leverag-
ing eBPF and ensuring that the application code is agnostic to the
capabilities of the underlying hardware.

Application-level partitioning.TheMICA in-memory key-value
store partitions data between CPU cores and uses NIC Flow Direc-
tor to map requests to specific CPUs [23]. However, for mapping
requests to a CPU, MICA requires clients to specify the CPU via a
UDP port. This requires clients to know how keys are mapped to
the CPU cores. The HERD key-value store uses a per-core request
memory buffer to directly RDMA to the target CPU core [14], which
has the same problem of exposing application partitioning scheme
to clients.

NIC offload approaches. KV-Direct is an in-memory key value
store, which is fully implemented to run on the NIC [20]. NetCache
implements key-value store on a programmable switch to offload
request processing from servers to the network to improve per-
formance [13]. The approach is similar to KV-Direct but focuses
on exploiting the programmability of modern ASIC switches, in-
stead of a programmable NIC. Offloading full application to the
NIC improves performance, but is impractical for general purpose
applications because of the high development cost incurred due to
inability to reuse existing code.

Dynamic CPU core allocation. Shenango is a runtime system
that targets low latency applications and CPU efficiency [29]. Typi-
cally low-latency is achieved with a busy-polling technique which
wastes CPU cycles. Shenango provides low-latency for applications
by dedicating a single CPU core that polls the NIC for arriving
packets and steers them to dynamically allocated application CPU
cores. Each runtime in Shenango has its own MAC and IP addresses.
When a packet arrives, the Shenango runtime uses a software-based

Receive Side Steering (RSS) hash to determine target CPU core. We
believe that our proposed packet steering approach could comple-
ment Shenango. For example, the per-runtime packet steering logic
could be offloaded to a NIC, eliminating the software-based steering,
further reducing CPU cycle consumption.

6 CONCLUSION
We have proposed a combination of application-level partition-
ing and packet steering with a programmable NIC to improve
application-level parallelism. An application partitions its resources
and data in DRAM between CPU cores, and a program running on a
programmable NIC inspects L7 protocol headers to steer the request
to its partition. We argue that XDP and eBPF make this approach
practical because they provide both a programmable packet pro-
cessor and kernel-bypass, and allow offload to the NIC. We believe
that this approach can reduce latency and improve throughput.
Furthermore, the approach complements advanced partitioning
techniques because partitioning is transparent to clients.

We are currently working on a prototype in-memory KV store
using this approach and are planning to compare its performance
against previous works such as MICA [23]. We are also considering
modifying existing application frameworks, such as libevent [21]
and libuv [22], to use our approach. This would allow some existing
applications to take advantage of application-level partitioning and
packet steering. We are also exploring the limits of XDP and eBPF
to our approach, and looking into alternatives to address them.

ACKNOWLEDGMENTS
Wewould like to thank our anonymous reviewers, and our shepherd
Abderrahmen Mtibaa for their helpful comments. We thank Björn
Topel, Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Jakub
Kicinski, for explaining the various technical details of XDP and
eBPF to us, and providing helpful comments. This work is supported
by the Business Finland 5G Force project.

REFERENCES
[1] [n.d.]. Scaling in the Linux Networking Stack. https://www.kernel.org/doc/

Documentation/networking/scaling.txt. [accessed 2019-06-12].
[2] Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. 2019. Fast Key-value

Stores: An Idea Whose Time Has Come and Gone. In HotOS. https://doi.org/10.
1145/3317550.3321434

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM CCR (July 2014), 87–95. https://doi.org/10.1145/2656877.2656890

[4] Chelsio Communications. 2019. Crypto Offload. https://www.chelsio.com/crypto-
offload/. [accessed 2019-06-25].

[5] Andy Currid. 2004. TCP Offload to the Rescue. Queue 2, 3 (May 2004), 58–65.
https://doi.org/10.1145/1005062.1005069

[6] Diego Didona and Willy Zwaenepoel. 2019. Size-aware Sharding for Improving
Tail Latencies in In-memory Key-value Stores. In NSDI. 15. http://dl.acm.org/
citation.cfm?id=3323234.3323242

[7] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. 2019. The Impact of Thread-Per-
Core Architecture on Application Tail Latency. In ANCS.

[8] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In NSDI. http://dl.acm.
org/citation.cfm?id=3307441.3307446

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://doi.org/10.1145/3317550.3321434
https://doi.org/10.1145/3317550.3321434
https://doi.org/10.1145/2656877.2656890
https://www.chelsio.com/crypto-offload/
https://www.chelsio.com/crypto-offload/
https://doi.org/10.1145/1005062.1005069
http://dl.acm.org/citation.cfm?id=3323234.3323242
http://dl.acm.org/citation.cfm?id=3323234.3323242
http://dl.acm.org/citation.cfm?id=3307441.3307446
http://dl.acm.org/citation.cfm?id=3307441.3307446

Partition-Aware Packet Steering using XDP and eBPF ENCP ’19, December 9, 2019, Orlando, FL, USA

[9] John L. Hennessy and David A. Patterson. 2017. Computer Architecture, Sixth
Edition: A Quantitative Approach (6th ed.). Morgan Kaufmann Publishers Inc.

[10] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress
Data Path: Fast Programmable Packet Processing in the Operating System Kernel.
In CoNEXT. https://doi.org/10.1145/3281411.3281443

[11] David A. Holland and Margo I. Seltzer. 2011. Multicore OSes: Looking Forward
from 1991, Er, 2011. In HotOS. 1. http://dl.acm.org/citation.cfm?id=1991596.
1991640

[12] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: A Highly Scalable User-
level TCP Stack for Multicore Systems. In NSDI. 14. http://dl.acm.org/citation.
cfm?id=2616448.2616493

[13] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In SOSP. https://doi.org/10.1145/3132747.3132764

[14] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA
Efficiently for Key-value Services. In SIGCOMM. https://doi.org/10.1145/2619239.
2626299

[15] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas Anderson, and
Arvind Krishnamurthy. 2016. High Performance Packet Processing with FlexNIC.
In ASPLOS. https://doi.org/10.1145/2872362.2872367

[16] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind Kr-
ishnamurthy, and Thomas Anderson. 2019. TAS: TCP Acceleration As an OS
Service. In EuroSys. https://doi.org/10.1145/3302424.3303985

[17] Jakub Kicinski. 2019. Private communication.
[18] Jakub Kicinski and Nicolaas Viljoen. 2016. eBPF Hardware Offload to Smart-

NICs: cls_bpf and XDP. https://www.netronome.com/m/documents/eBPF_HW_
OFFLOAD_HNiMne8_2_.pdf. [accessed 2019-06-26].

[19] Avi Kivity. [n.d.]. Adventures with Memory Barriers and Seastar on Linux. https:
//www.scylladb.com/2018/02/15/memory-barriers-seastar-linux/. [accessed
2019-06-26].

[20] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In SOSP. https://doi.org/
10.1145/3132747.3132756

[21] libevent: an event notification library. 2002. https://libevent.org/. [accessed
2019-06-26].

[22] libuv: Cross-platform asynchronous I/O. 2011. https://libuv.org/. [accessed
2019-06-26].

[23] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast In-memory Key-value Storage. In NSDI. 16.
http://dl.acm.org/citation.cfm?id=2616448.2616488

[24] Linux Foundation. 2010. Data Plane Development Kit. https://www.dpdk.org.
[accessed 2019-06-27].

[25] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and
Karan Gupta. 2019. Offloading Distributed Applications Onto smartNICs Using
iPipe. In SIGCOMM. https://doi.org/10.1145/3341302.3342079

[26] Murali Mani. 2013. Enabling Secure Query Processing in the Cloud Using Fully
Homomorphic Encryption. In DanaC. https://doi.org/10.1145/2486767.2486775

[27] Jeffrey C. Mogul. 2003. TCP Offload is a Dumb Idea Whose Time Has Come. In
HOTOS. 1. http://dl.acm.org/citation.cfm?id=1251054.1251059

[28] David Mulnix. 2017. Intel Xeon Processor Scalable Family Technical
Overview. https://software.intel.com/en-us/articles/intel-xeon-processor-
scalable-family-technical-overview. [accessed 2019-06-09].

[29] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads. In NSDI. http://dl.acm.org/citation.cfm?id=3323234.
3323265

[30] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,
Rastislav Bodik, and Thomas Anderson. 2018. Floem: A Programming System
for NIC-accelerated Network Applications. In OSDI. http://dl.acm.org/citation.
cfm?id=3291168.3291217

[31] Dan R. K. Ports and Jacob Nelson. 2019. When Should The Network Be The
Computer?. In HotOS. 7. https://doi.org/10.1145/3317550.3321439

[32] Programmable RSS Demo. 2014. https://github.com/Netronome/bpf-samples/
tree/master/programmable_rss. [accessed 2019-06-12].

[33] Luigi Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O. In USENIX
ATC. http://dl.acm.org/citation.cfm?id=2342821.2342830

[34] Karl Rupp. 2018. 42 Years of Microprocessor Trend Data. https://www.karlrupp.
net/2018/02/42-years-of-microprocessor-trend-data/. [accessed 2019-06-25].

[35] Seastar. 2014. http://www.seastar-project.org/. [accessed 2019-06-11].
[36] Brent Stephens, Aditya Akella, and Michael M. Swift. 2018. Your Programmable

NIC Should Be a Programmable Switch. In HotNets. https://doi.org/10.1145/
3286062.3286068

[37] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. 2007. The End of an Architectural Era: (It’s Time
for a Complete Rewrite). In VLDB. http://dl.acm.org/citation.cfm?id=1325851.
1325981

[38] Fabian Ruffy William Tu and Mihai Budiu. 2018. Linux Network Programming
with P4. http://vger.kernel.org/lpc_net2018_talks/p4c-xdp-lpc18-paper.pdf. [ac-
cessed 2019-06-16].

https://doi.org/10.1145/3281411.3281443
http://dl.acm.org/citation.cfm?id=1991596.1991640
http://dl.acm.org/citation.cfm?id=1991596.1991640
http://dl.acm.org/citation.cfm?id=2616448.2616493
http://dl.acm.org/citation.cfm?id=2616448.2616493
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/2872362.2872367
https://doi.org/10.1145/3302424.3303985
https://www.netronome.com/m/documents/eBPF_HW_OFFLOAD_HNiMne8_2_.pdf
https://www.netronome.com/m/documents/eBPF_HW_OFFLOAD_HNiMne8_2_.pdf
https://www.scylladb.com/2018/02/15/memory-barriers-seastar-linux/
https://www.scylladb.com/2018/02/15/memory-barriers-seastar-linux/
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1145/3132747.3132756
https://libevent.org/
https://libuv.org/
http://dl.acm.org/citation.cfm?id=2616448.2616488
https://www.dpdk.org
https://doi.org/10.1145/3341302.3342079
https://doi.org/10.1145/2486767.2486775
http://dl.acm.org/citation.cfm?id=1251054.1251059
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
http://dl.acm.org/citation.cfm?id=3323234.3323265
http://dl.acm.org/citation.cfm?id=3323234.3323265
http://dl.acm.org/citation.cfm?id=3291168.3291217
http://dl.acm.org/citation.cfm?id=3291168.3291217
https://doi.org/10.1145/3317550.3321439
https://github.com/Netronome/bpf-samples/tree/master/programmable_rss
https://github.com/Netronome/bpf-samples/tree/master/programmable_rss
http://dl.acm.org/citation.cfm?id=2342821.2342830
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
http://www.seastar-project.org/
https://doi.org/10.1145/3286062.3286068
https://doi.org/10.1145/3286062.3286068
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://vger.kernel.org/lpc_net2018_talks/p4c-xdp-lpc18-paper.pdf

	Abstract
	1 Introduction
	2 Background
	3 Application-Level Partitioning and Packet Steering
	3.1 Partitioning in the thread-per-core model
	3.2 Partition-aware packet steering
	3.3 Example: A Key-Value Store

	4 Discussion
	5 Related Work
	6 Conclusion
	References

