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Introduction

• OS abstractions limit application-level parallelism and 
hold back performance of today’s fast I/O devices.


• Parakernel = partition hardware resources and minimise 
OS participation in data plane operations
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Why is the OS a 
bottleneck now?
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NICs are faster than the 
CPU

• For example, a 40 GbE NIC receives a cache-line sized 
packet faster than the CPU accesses its last-level cache 
(12 ns vs 15 ns).


• 400 GbE NICs on the horizon


• The time budget to process a packet is shrinking radically 
and parallelisation is critical.

Kaufmann et al. 2016. High Performance Packet Processing with FlexNIC. ASPLOS ’16
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Persistent storage near the 
speed of DRAM

• Kernel I/O interfaces designed for storage significantly 
slower than DRAM.


• NVMe access latency 250x slower than DRAM (~20 μs vs 
80 ns).


• Intel Optane access latency is 4x slower than DRAM (~80 
ns vs. ~320 ns).


• Forces us to rethink OS abstractions and interfaces.

Honda et al. 2018. PASTE: A Network Programming Interface for Non-Volatile Main Memory. NSDI ’18

Intel® 64 and IA-32 Architectures Optimization Reference Manual (April 2019)

https://www.enterprisestorageforum.com/storage-hardware/nvme-speed.html !5

https://www.enterprisestorageforum.com/storage-hardware/nvme-speed.html


/29

New application 
requirements
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Predictable tail latency

• Large-scale parallelisation causes the tail latency of a 
single component to dominate.


• Hard to achieve with monolithic, shared-memory kernels:


• Background tasks


• Lack of partitioning


• Synchronisation of shared state

!7
Dean and Barroso. 2013. The Tail at Scale. CACM

Li et al. 2014. Tales of the Tail: Hardware, OS, and Application-level Sources of Tail Latency SOCC ’14
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Security

• Monolithic kernels are inherently insecure because of their 
large trusted computing base (TCB).


• Eliminating kernel abstractions helps shrink TCB.

!8
Biggs et al. 2018. The Jury Is In: Monolithic OS Design Is Flawed: Microkernel-based Designs Improve Security. APSys ‘18
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Parakernels
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Goals

• Improve application-level parallelism


• Unlock the speed of today’s fast I/O devices
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Architecture

• Eliminate most kernel abstractions


• Partition hardware resources


• Minimise OS participation in data plane operations
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Process abstraction

• A process in a parakernel is the kernel abstraction for:


• Application-level parallelism


• Isolation and multi-tenancy
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Parallelism

• Applications must partition their data and work by 
process.


• Examples of partitioning today:


• Thread-per-core servers (such as MICA and Seastar)


• Single-threaded managed runtimes (such as Node.js)

!13
Lim et al. 2014. MICA: a holistic approach to fast in-memory key-value storage. NSDI ’14

http://seastar.io/shared-nothing/

http://seastar.io/shared-nothing/
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Concurrency

• Parakernel eliminates kernel threads because of their high 
overheads (context switch and synchronization).


• Parakernel provides non-blocking kernel interfaces.


• Concurrency is managed by user space:


• Many abstractions available today: event callbacks, 
fibers, coroutines, and future/promise model.
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Partitioning

• Hardware resources are partitioned between processes to 
allow them to run independently.
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Partitioning

Process Process Process

NIC

CPU 0 CPU 1

Driver

RX/TX queue pairs

User space

Kernel
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Example: NIC receive
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Example: NIC receive
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D₀ D₁ D₂ D₃

M₀ M₁ M₃ M₂

DMA descriptor ring

Memory pool

Example: NIC RX ring

• An RX queue consists of two 
components: DMA descriptor 
ring and a memory pool.


• On packet receive, NIC takes 
a DMA descriptor, and DMAs 
to the memory it points to.
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D₀ D₁ D₂ D₃

M₀ M₁ M₃ M₂

DMA descriptor ring

Memory pool

Example: NIC RX ring

• DMA descriptors use physical 
memory addresses.


• Need to ensure that processes 
are not able to write to 
arbitrary physical memory.


• IOMMUs are device-based, 
not queue based. 


• Parakernel is responsible for 
DMA descriptor ring writes.
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Example: timers

• Hardware timers, such as the APIC timer, are not 
partitionable.


• The kernel could provide a periodic timer, but this is 
inefficient.


• Timers as a kernel abstraction are worth keeping. 
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Discussion
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Evaluation plan

• Network-intensive application (for example, MICA KVS)


• Application running on a managed runtime (for example, 
Node.js)


• Target platform is undecided
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Open issues

• What other kernel abstractions are needed?


• How to provide backwards compatibility?


• Linux API as a library
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How are parakernels 
different?

• Demikernels propose an unified kernel-bypass device 
interface, but retain POSIX for backward compatibility.


• Exokernels eliminate all kernel abstractions, but 
parakernels keep for I/O devices partitioning by queues.


• Arrakis partitions virtual devices, parakernels partition I/O 
queues.


• μ-kernels keep kernel abstraction only if it is required for 
correctness.
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Summary

• Parakernels aims to improve application-level 
parallelism and unlock today’s fast I/O devices by 
partitioning hardware resources and minimising OS 
participation in data plane operations.


• We are working on a prototype parakernel in Rust.

!29
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Thanks! 

penberg.org

http://penberg.org


Backup slides



What devices are partition 
able?

• If a device has internal parallelism that is exposed to the 
programmers, it is partitionable for parakernels.


• I/O queues that run independently are TODO


• Multi-queue NICs, NVMe devices, and GPUs. 



Parakernel vs. demikernel

• Demikernels propose a new high-level I/O kernel 
abstraction for kernel-bypass devices.


• Demikernel retains the monolithic, shared-memory kernel 
for control plane and legacy applications, parakernel 
wants to eliminate it.



Parakernel vs. exokernel

• Exokernels aim for performance and flexibility by 
eliminating all kernel abstractions.


• Ideal kernel interface is the hardware interface.


• Parakernels are inspired by exokernels, but take a more 
relaxed approach to kernel abstractions.



Parakernel vs. Arrakis

• Arrakis uses hardware virtualisation (SR-IOV) to partition 
devices between applications.


• The problem with NICs, for example, is that each 
application has its own vNIC (and own MAC address), 
which exposes partitioning to clients.


• Parakernel partitions the NIC by its queues, which is 
transparent to clients.



Parakernel vs. μ-kernel

• μ-kernels tolerate a kernel abstraction only if it is require 
for correctness, parakernel does not take this strict view.


• Parakernels could be implemented as μ-kernels, but 
partitioning I/O devices by queue requires a multiserver 
approach.


• It is not clear what the performance overhead is, which is 
why current implementation of parakernel uses kernel 
drivers.


